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Structural and relativistic aspects in transforming systems. 

I.Arrhenius and Universal representations of thermally 

driven processes. 

 
Summary 
 

Topoenergetic principles are reviewed together with some practical and well 

known cases of thermally driven processes for which Arrhenius and Universal 

representations are applied. The results obtained are discussed in view to reveal 

the general rules in processing experimental data and physical significances of 

topoenergetic parameters defining the nature and the amplitude of transforming 

processes.   

 

An overview of topoenergetic principles 
 

Topoenergetic principles were initiated with calorimetric experiments on 

specimens in which a wide variety of thermally transforming processes occur. 

The basic idea was that the measuring system including the tested specimen is 

an energy circuit and can be modeled by elementary components like electric 

circuits. This basic idea was taken from a working team trying to represent very 

complicated biological systems by space distribution of such elementary 

components [1]. Unfortunately their idea led to unsolved problems, so that my 

solution to remove space and including it in the elementary components has 

opened a new horizon both on measuring systems and tested specimens. 

Calorimetric systems were modeled successfully [2] and the immediate 

observation was about the composite nature of transforming specimens, i.e. they 

have at least two mutually interacting components: in general an inert one, Cin 

located in the laboratory time-reference system and a transforming component, 

Ctr, located in a separate time-reference system. An original kinetic equation 

was established based on these ideas and considering the transforming heat flow, 

wtr, obeying Arrhenius law. By submitting a stepwise perturbation on the tested 

specimen from an initial temperature Tin at which specimen is in equilibrium 

(no transforming process occurs) to a final temperature T at which the 

transforming process occurs, the two heat flows (win as immediate and wtr 

delayed by a specific time, tmax, at which the process has maximum rate value) 

the following equation exists [3]: 

 

                         ln (tmax*T)  =  - E / (R*T)    +   K                             [1], 

 

where E is the activation energy, R the gas constant and K a parameter including 

some constants of the measuring systems and Cin [3,4]. For almost all 

transforming processes studied by different measuring systems according to 
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these experimental conditions, this equation fairly agree proving the dissipative 

coupling between Cin and Ctr. The first main result obtained in applying this 

equation was in observing that E can be positive or negative and this is strongly 

connected with the relative sign of win and wtr. 

However, there are some cases in which this coupling has an inductive element. 

Amorphous-crystalline coupling in chlorinated polyethylenes (CPE) was studied 

thoroughly and represents such a case [5-7]. 

We can observe that the stepwise experiment between the two values of 

temperature, Tin and T, contains a threshold value To at which transforming 

process is triggered. For all particular cases studied according to equation (1), 

another kinetic equation exists: 

 

                        ln (tmax)  = N* ln | T – To|   +  M                                          (2) 

 

where parameters (N, M, To) defines the nature and the amplitude of the 

transforming process. This kinetic equation was proven to have a Universal 

character being available for any measuring system and transforming process 

driven by a general potential, U, in standard experimental conditions imposed by 

topoenergetic principles [8, 9]. 

One of the most important experimental conditions for which these 

topoenergetic equations exist refers to standard volume of tested specimens. So, 

for a series of tested specimens performing the same transforming process (i.e. 

the same nature), but having different amplitudes (i.e. different values of Cin 

and Ctr) further equations exist: 

 

               Arrhenius representation:  K = n1*E  +  m1                                  (3) 

 

               Universal representation:  M = n1*N  +  m1                                 (4). 

 

In these conditions, parameters (E, K) and (N, M, Uo) define the behavior of a 

tested sample with particular values of Cin and Ctr or so called ontogeny of this 

sample. Parameters (n1, m1) define the group behavior of samples having the 

same nature of transforming process, but different values of Cin and Ctr, or the 

phylogeny of these samples. By considering more series of samples related by 

different other characteristics, it is possible to define higher phylogenies, so that 

starting from basic experimental data up to highest phylogeny the topoenergetic 

structure of all these data are structured in pyramidal shape.  Universal 

representation has additional advantages relative to Arrhenius one (see above 

mentioned citations for more details):   

- it can be applied to any transforming process driven by a general 

potential, U and by considering different values (eigenvalues, θ) of a 

response function defined in the measuring system; it defines new 

important characteristics:  
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- the threshold parameter, Uo; 

-    the process amplitude, M ~ |ln Ctr|; 

- the value of kinetic unit, -M/N ~ |ln ctr|; 

- the value of coupling strength between Cin and Ctr,  -N^2/M ~ |CS|. 

Some more advantages will be revealed in the next analysis of particular cases. 

 

Review of some particular cases 
 

The main advantage of thermally driven processes is that it is possible to 

imagine calorimetric model evidencing the exact nature and structural origin of 

win and wtr. This was the reason to introduce the notion of process polarity 

directly connected with the endothermal or exothermal sign of these energy 

flows [10]. 

Table 1 gathers a series of thermally driven processes thoroughly studied 

according to topoenergetic principles. Only several cases are reviewed in the 

following with the aim to evidence and to fix topoenergetic principles. 

 

Crystallization from melt 
 

Crystallization from melt of different polyethylenes (PE) was the first 

transforming process studied according to these new principles [3-7]. 

Additionally, some of experimental data from literature are processed according 

to the above Arrhenius and Universal representations [8, 11]. 

In Figures 1 and 2 show Arrhenus and Universal representations of experimental 

data obtained in differential calorimetric system for the three high density PE 

(HDPE) (Hizex, Mitsui-Co, Japan) studied in the series of studies on 

amorphous-crystalline coupling [3].The PE powders are analyzed as such (dry, 

D) and in mixture with silicon oil (wet, W).It is interesting to observe that the 

process amplitude separates in the same order the samples and silicon oil 

increases process amplitude in both representations.  

In Figures 3-8 the crystallization from melt of a series of HDPE fractions by 

using a dilatometric measuring system is presented for which tmax corresponds 

to half time of conversion function.  

Crystallization from melt results with different polarity signs in the two 

representations due by the only fact that wtr and win are exothermal relative to 

the other series of transforming processes where these are endothermal and 

polarity results to be positive in both representations (Table 1).Crystallization 

from melt can be considered from structural point of view as a polymerization 

process. However, the proper polymerization-curing processes occur by rising 

stepwise temperature perturbation where win = ENDO and wtr = EXO [23]. We 

may observe first that: 

 

crystallization from melt:  To = melting point (Tm);                                      (5) 
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polymerization-curing: To = freezing/glass transition point of kinetic entity (Tg). 

 

On the other hand, melting-crystallization processes are reversible, while 

polymerization processes are not. Unfortunately, there are not available similar 

experimental data on melting processes yet in view to complete this 

topoenergetic view. However, approximate experiments were made with small 

increasing temperature steps (successive steps of 5 
0
C) up to and over Tm by 

differential calorimetry [24]. Figures 9 and 10.present three samples originating 

from the same LPE-1 (D means dry powder like in Figures 1 and 2). D-CPE*-1 

(chlorinated LPE-1 in aqueous suspension with approx. 40% wt Cl) is the 

genuine sample tested (so called at first calorimetric round), while D-CPE-1 is 

the same test specimen tested second time (at second round).For each tested 

sample three eigenvalues are considered proportional with heat capacity, 

denoted as Ca, Ch and Cah.It results that Universal representation appears to be 

more sensitive than Arrhenius one to structural and kinetic differences between 

samples. On the other hand, in this measuring system partial annealing of 

samples involves some additional processes based on defect precipitation and 

lamellar thickening and/or breaking (see bellow). 

The difference between crystallization from melt and melting processes arises in 

the fact that the stepwise temperature perturbation is applied in opposite 

directions and this appears like the time “flows” in opposite senses, so that: 

 

crystallization from melt,      To = Tm , (win, wtr) = EXO,  win*wtr > 0        (6) 

melting of crystalline phase, To = Tm, (win, wtr) = ENDO, win*wtr > 0. 

 

Another important fact is that amorphous and crystalline phases coexist 

separately even in molten state (see the Hosemann’s team studies on 

paracrystalline structures [25]). 

     

Defect precipitation in CPE samples 
 

 Annealing of genuine CPE samples at temperatures close and bellow to Tm 

appears in isothermal calorimetric system only by win (called as “IN VIVO” 

measuring system) [5, 7]. However, these annealed samples show dramatic 

changes in crystalline structure in differential scanning calorimeter (DSC called 

as “IN VITRO” measuring system). More exact, two simultaneous processes 

occur by coherent precipitation of chlorinated defects: (i) the segregation of 

crystalline lamellae and (ii) the formation of inter-lamellar structure. The 

melting endotherm splits in two peaks, Tm1 and Tm2 > Tm1, corresponding to 

the melting of inter-lamellar order and of lamellar fragments, respectively [5, 7]. 

Amplitudes of the two processes IN VIVO measuring system are in reverse 

relationship, i.e. are simultaneous, equal and of opposite signs (Table 2): 
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                 wtr(Tm1)(EXO) = - wtr(Tm2)(ENDO)                            (7). 

 

so that they annihilate each other. They can be measured only IN VITRO 

measuring system by different eigenvalues (Table 2, [7]). 

From structural point of view the thoroughly studies established that these two 

transforming components are connected by an inductive element [5, 6]. 

Similar process with wtr(Tm1)(EXO) appears in amorphous materials and 

revealed also by IN VITRO measuring systems (DSC, impact test, dilatometry, 

etc.) [18].  

 

Adsorption of gas component on stationary phase 

 

Gas chromatography was compared with differential thermal analysis, so that 

the retention time, tR, corresponds with tmax. The process of retention of a gas 

component is wtr(EXO) while win(ENDO) represents its heating from room 

temperature to the column one. 

Figures 11 – 18 show the Arrhenius and Universal representations on gas 

chromatography of several n-alkanes and n-alcohols. The experimental 

conditions are commonly used as routine procedure in any gas chromatography 

laboratory: 140-190 
0
C, chromosorb S as stationary phase, nitrogen as carrier 

gas and the same conditions for all components [17]. 

 

Thermally flow of Newtonian liquids 
 

Viscosity represents an important open problem of actual science and 

technology because measuring systems used for viscosity are far from its basic 

definition.  

In view to evidence topoenergetic aspects of thermally flow of Newtonian 

liquids as the simplest flow process, we can imagine a calorimetric cell with a 

frozen liquid at Tin on the surface which is placed a metallic ball. This cell is 

transferred in an isothermal differential calorimeter at a temperature T at which  

the liquid melts and the metallic ball begins to fall and helps us to evaluate the 

liquid viscosity. It simply results that win(ENDO) and wtr(EXO) ~ dynamic 

viscosity (DV). 

Figures 19 – 21 show the Arrhenius and Universal representations for a series of  

standard liquids thoroughly studied in the German Institute of  Metrology 

(Physikalisch-Technische Bundesanstalt) [20]. 

 

In conclusion, Tables 3 and 4 give the general relationships between the 

ontogenic and first phylogenic parameters in the Arrhenius and Universal 

representations. Universal representation was successfully applied to many other 

transforming processes driven by a wide variety of potentials and measuring 

systems. 
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Table 1. Arrhenius and Universal representations of some thermally driven transforming processes. 
 

ARRHENIUS UNIVERSAL transforming 

process 

measuring system,  

eigenvalue (θ) 
win wtr 

win*wtr E n1 E*n1 P N n1 N*n1 M P 

PE melt crystallization [3, 11] 
differential calorimetry, 

dilatometry , θ = tmax 
EXO EXO 

PE melting [24] 
differential calorimetry, 

θ = heat capacity 
ENDO ENDO 

+ + 
ln Ctr 

+ + + – – + ln Ctr – 

diffusion in solid metals 

DIFFUTOR® [12, 13] 
θ = diffusion coefficient 

Vapor-Liquid Equilibria [14] 

VAPORSAT® [15] 
θ = equilibrium pressure 

annealing of PES fibers [16] 
dilatometry under constant 

stress, θ = relative shrinkage 

ENDO ENDO + + 
ln Ctr 

+ + + + – – -ln Ctr + 

adsorption of gas component  

on stationary phase [17] 

gas chromatography 

θ = retention time, tR 

structuring in amorphous 

polymers [18] 

impact resistance, shrinkage 

θ = tmax 

defect precipitation by 

annealing  in crystalline 

phase (chlorinated PE) [7] 

differential calorimetry 

θ = splitting coefficient of 

melting endotherm 

quenching of atomic & 

molecular excited species in 

rarefied gases [19] 

luminescence decay of activated 

species, θ = 1/(deactivation rate) 

flow of Newtonian 

liquids [20] 
dynamic viscosity, θ =DV 

electric conductance of 

NTC thermistors [21] 
θ = electric resistance 

oxidation of amorphous 

phase in PE [4, 22] 

curing-polymerization  

(epoxy+amine [23]) 

differential calorimetry 

θ = tmax 

ENDO EXO – – 
-ln Ctr 

+ – – – – + ln Ctr – 
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Table 2. Representations of the two concurrent processes occurred in CPE samples by annealing and revealed 

by differential scanning calorimetry as after effects (so called “IN VITRO” measuring system [5,7]). 
 

ARRHENIUS UNIVERSAL IN VITRO 

endotherms 
process significance 

eigenvalue*) 

θ 
win wtr win*wtr E n1 E*n1 P N n1 N*n1 M P 

Tm2 

order-disorder (melting 

endotherm) of lamellar 

fragments remained after 

coherent precipitation of 

defects 

α = 

h2/(h1+h2) 
ENDO ENDO + + 

ln Ctr 
+ + + + – – -ln Ctr + 

Tm1 

order-disorder (melting 

endotherm) of interlamellar 

order created by coherent 

precipitation of defects 

1- α = 

h1/(h1+h2) 
ENDO EXO – – 

-ln Ctr 
+ – – – – + ln Ctr – 

*) h1, h2 are the peak heights of Tm1 and Tm2, respectively. 

Table 3. ARRHENIUS representation  (K = n1*E  +  m1). 
 

win*wtr E*n1 P E 

+ + + ln Ctr 

– – – - ln Ctr 

 

Table 4. UNIVERSAL  representation  (M = n1*N + M ). 
 

N*n1 N P M -M/N -N^2/M 

+ -ln Ctr – ln Ctr ln ctr CS 

– ln Ctr + -ln Ctr -ln ctr -CS 
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Figure 13. 
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Figure 14. 
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Figure 16. 
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Figure 17. 
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Figure 18. 
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